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The asymptotic behaviour of the remote field in a wedge under static and dynamic loading in the neighbourhood of the vertex 
is studied. It is shown that, unlike the well-known Carothers' paradox, neither the solution of the static nor the dynamic problem 
satisfy St Venant's principle for any wedge angle. The solution of the dynamic problem for a harmonic action is constructed using 
Sommerfeld's integrals. It is shown that the asymptotic behaviour of the solution in a remote zone is not of St Venant type, i.e. 
the corresponding coefficient of the leading term of the asymptotic expansion is equal to a "fractional" moment of the external 
forces. 

The solution of the static plane problem of the theory of elasticity for a wedge with normal stresses applied to its 
sides in a small neighbourhood of the comer point, the stresses being statically equivalent to a pair of forces, is 
remarkable in that for a fairly large wedge the asymptotic behaviour of the stresses in a remote region is inconsistent 
with the solution of St Venant's limiting problem (Carothers' paradox [1]). It is interesting to see whether or not 
the paradox is carried over to the case of  dynamic (impulse or harmonic) loading of a wedge. Below we answer 
this question in the case of antiplane shear. The question of the specific nature of St Venant's principle as applied 
to dynamic problems has been considered in [2-8]. 

1. It is useful to precede the solution of the dynamic problem of the theory of elasticity for a wedge by a completely 
elementary analysis of  the corresponding static problem. In the case of antiplane shear the displacement vector 
has only one non-zero component u3 ffi w(r, 0), which satisfies the Laplace equation in f~ = ((r, 0 z) Ir > 0, --a < 
0 < ~ -.0 < z < **}. We prescribe the stresses 

O ffi +ct, Xez=lXr-ldwla~f1(r) (1.1) 

on the faces of the wedge, assuming that the support off(r) is concentrated in a small neighbourhood (0, 8) of the 
wedge vertex, the principal force vector being equal to zero and the principal moment being non-zero 

8 8 
F=Mo= I f(r)dr=O, M I=I rf(r)dr¢O (1.2) 

o 0 

To solve the above problem we use the Meilin integral transform 

~'(s,O) = T w(r,O) rs-l dr 
0 

The Mellin image if(s, 0) satisfies the following equation and boundary condition 

02ff / 002 + s2~ = 0 (1.3) 

0 = ±ct, I t S  / ~0 ffi ~ f (r)r2dr m M~ 
o 

We will confine ourselves to considering the antisymmetfic solution. Then 

ff = Ms(its) -I sin(s0) / cos(set) 

and so the inverse MeUin transform gives the displacement 
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. . , .  1 c+/*" Ms s in (50)  - s ,  
w t  r ,  vT ) = " ~  c )i** I xseOs( sOti' r as (1.4) 

We obtain an asymptotic estimate of the integral (1.4) for r ~ 1 by completing the integration contour in (1.4) by 
a semicircle of infinitely large radius in the half-plane Re s > 0 and using the residue theorem. The leading term 
of the asymptotic expression has the form 

Ma sin0t0 / (2¢t)) o(r-I¢/(2a)) 
w(r,O) = - (ttx / (2ct))r x/¢2a) + 

Ma = ~ f(r)rX/(2Ct)dr 
o 

(1.5) 

The coefficient Me cannot be interpreted as the moment of forces, and so St Venant's principle is not satisfied in 
its traditional form in the case in question, even though the integral dependence on the boundary interaction (as 
a moment with fractional power) is preserved, The solution is of St Venant type for a = g/2, i.e. for an elastic half- 
plane. Note that the solution of the limiting problem concerned with antiplane shear of a wedge by a pair of forces 
concentrated at the vertex eJfists only in this case and cannot be constructed for ¢z # g/2. 

2. For harmonic action 

O= +Or, x0z ffi f(r)e -i~n (2.1) 

on the wedge faces the problem can be reduced to the Helmholtz equation 

Aw+k2w=O, k--.¢o4" ~ (2.2) 

We shall seek an antisymmetric solution of the equation satisfying the radiation condition and a condition on the 
edge of the wedge [9] in the form of Sommeffeld's integral 

w(r,O) = i .  I [O(~ + O ) -  ~ ( ~ -  O)]eikrc°s~d~ 
2ffa C 

(2.3) 

where the contour C contains the half-strip 0 < Re g < n, Im ~ > 0. It can be shown by direct verification that 
the integral (2.3) satisfies the Heimholtz equation (2.2). As regards the boundary condition (2.1), using the inversion 
formulae [10] 

F(q)=/ksinq? f(r)e-i~c°Sgdr, f(r)= 2 ~  ~c F(~)eitre°sgdq 
0 

we obtain the following functional equation for 0(~) 

(2.4) 

F(~) = I T f(r)e-ilwcOSgdr (2.5) 
q~(q+O)+O(q-O)=o(q), o(q)=/jxksing ~0 

i.e. Malyuzhinets' equation, which can be solved using the Fourier integral transform. After transformations, we have 

• i** r- "1-1 

4¢t _/.. k 2 1  j 
(2.6) 

It follows that the solution of (2.1), (2.2) can be represented in the form 
i** 

w(r,O) = ~ J o('q)A(~,O,'q)eitrc°s~d'qd~ 
c - i** 

- !  n 0 - i  

(2.7) 

Changing the order of integration in (2.7), we find that 

w(r,e) = l ~f(p)P(r,p,e)dp 
IXo 



Antiplane deformation of an elastic wedge 309 

iml 
P(r ,p ,0)= ~ ~ A(~,O,q)eik(-pc°sq+rc°SOdqdq 

c-/oo 

We recall that f(p) is assumed to be non-zero over the interval (0, ~i) and relationships (1.2) are satisfied. Therefore, 
assuming 5 to be small compaxed with the wavelength ~. = 2~/k and retaining the leading term in p in the asymptotic 
expansion of P(r, p, 0), we obtain 

I s 
w = -- ~ f(p)pXt(2Ot)dpQ(r,e) (2.8) 

P,o 

with some bounded function Q(r, 0). The asymptotic form (2.8) of the solution of the dynamic problem is not of 
St Venant type.t 

In the case of non-stationary action 

O = ~ "¢~ =f(r)q(t) 

one can use the Fourier integral representation 

of q(t), where c is the velocity of transverse waves in the elastic medium. We will assume that the spectral action 
density Q(k) differs significantly from zero in the interval (0, k0) with k05 ~ 2~. Then in the remote region kr >> 1 
the asymptotic form of the solution of the non-stationary problem has the form 

w(r,O,t) = Re~ Q(k )w(r,O,k )e-ikCt dk 
o 

where w(r, 0 k) depends on the fractional moment of the external force Ma. 
The problems for the Laplace and Helmholtz equations in a wedge considered above also have other physical 

interpretations in hydrodynamics, electrodynamics, heat conduction theory, etc. 
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Trans/ated by T.J.Z. 

tFormula (2.7) in [11] is analysed incorrectly. 


